Inverse Functions (A) ANSWERS

Section A Find the inverse of each function.			function.
		Functions	Solution
	1) 1	f(x) = x + 4	$f^{-1}(x) = x - 4$
	2) 1	f(x) = 6x - 2	$f^{-1}(x) = \frac{x+2}{6}$
	3) 1	$f(x) = \frac{x}{8}$	f ⁻¹ (x) = 8x
	4) 1	$f(x) = \frac{x}{2} - 7$	$f^{-1}(x) = 2x + 14$
	5) 1	$f(x) = \frac{11 - 5x}{4} - 12$	$f^{-1}(x) = \frac{-37 - 4x}{5}$
	6) 1	$f(x) = x^2 - 10$	$f^{-1}(x) = \sqrt{x + 10}$
	7) 1	$f(x) = \frac{2x^2 + 9}{15}$	$f^{-1}(x) = \sqrt{\frac{15x - 9}{2}}$
	8) 1	$f(x) = \sqrt{4x + 13}$	$f^{-1}(x) = \frac{x^2 - 13}{4}$

Section B

1) Let $f(x) = 2x^{3} - 16$. Solve the equation $f^{-1}(x) = 3$. 2) When $f(x) = x^{2} + 4x + 3$, x > 0, find $f^{-1}(x)$. 3) Let $f(x) = \frac{2 + 3x}{x - 2}$ and $g(x) = x^{2}$ a) Find the inverse of f(x)b) Find the value of $f^{-1}g(-2)$ f(x) $= \frac{1}{3}(2x - 5)$, $g(x) = \frac{4}{2 - x}$, solve the equation $f^{-1}(x) = g(x)$ $x = -\frac{2}{3}$ x = 1