$$
\text { If } a x^{2}+b x+c=0, \text { then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Section A
Write down the values of a, b and c in each case then solve the equation using the quadratic formula. Leave answers to 2 decimal places.

Section B Solve the following equations to 2 decimal places.

1) $4 x^{2}+9 x+1=0$
$-2.13,-0.12$
2) $4-3 x-2 x^{2}=0$
$-2.35,0.85$
3) $x^{2}-8 x+1=0$
$0.13,7.87$
4) $2 x^{2}-2 x=7 x$
$0,4.5$
5) $7 x^{2}+3 x-2=0$
$-0.79,0.36$
6) $x(2 x+5)=10$
$-3.81,1.31$
7) $3 x^{2}-4 x-5=0$
-0.79, 2.12
8) $(x-1)^{2}=17$
$-3.12,5.12$
9) $5 x-1-x^{2}=0$
$0.12,4.79$
10) $2(3-x)=(4 x+3)^{2}+6$
$-1.125,-0.5$

Extension $3 x^{2}-x+7=0$

A. What happens when you try to solve the equation above using the quadratic formula? No (real) solutions
B. How does the value of $b^{2}-4 a c$ explain your answer to part A.
<0 cannot square root negative value.
C. What conditions involving a, b, and c for $a x^{2}+b x+c=0$ cause:

- No solutions

$$
b^{2}-4 a c<0
$$

- Two solutions

$$
b^{2}-4 a c>0
$$

- One solution

$$
b^{2}-4 a c=0
$$

