Each triangle contains similar right angled triangles.
Measure then divide the lengths given in each box.

Leave all answers to 2 decimal places.

Section B Sine (Sin) ratio

$$
\begin{aligned}
& \frac{\mathrm{BF}}{\mathrm{AB}}=\square 0.44 \quad \frac{\mathrm{CG}}{\mathrm{AC}}=0.40 \\
& \frac{\mathrm{DH}}{\mathrm{AD}}=0.47 \quad \frac{\mathrm{EI}}{\mathrm{AE}}=0.44
\end{aligned}
$$

$$
\operatorname{Sin}(B A ̂ F)=0.44
$$

$\frac{D H}{A D}=0.61 \quad \frac{E I}{A E}=0.61$

$$
\operatorname{Sin}(B A ̂ F)=0.60
$$

Section C Cosine (Cos) ratio

$$
\operatorname{Cos}(B A ̂ F)=0.80
$$

Section D Using your investigation above, match the following cards.

Section E

	Use a ruler to work out the following:		Use your calculator to work out the following:	
	$\frac{\text { OPP }}{\text { HYP }}=$	0.51	$\operatorname{Sin} 30^{\circ}=$	0.50
	$\frac{A D J}{H Y P}=$	0.85	$\operatorname{Cos} 30^{\circ}=$	0.87
	$\frac{\text { OPP }}{\text { ADJ }}=$	0.60	$\operatorname{Tan} 30^{\circ}=$	0.58

What do the findings in this table show you? Trig functions give true ratio.
(Slight differences are due to measurement errors).

Section F
How might we use the things below to solve problems involving missing lengths and missing angles in right angled triangles?

